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TURBINE-BUCKET TEMPERATURES WITH PERIODIC VARIATION IN GAS TEM-
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The turbine-bucket temperature is determined for a sinusoidal varia-
tion in the gas temperature. It is demonstrated that the bucket tem-
perature varies with the same frequency as the temperature of the gas,
with the amplitude of bucket-temperature fluctuations being smaller
than the amplitude of gas-temperature fluctuation.

In a variable regime the stator and rotor blades,
the housings, disks, and similar components in the
turbine of a gas-turbine engine exhibit temperatures
which differ from the temperature of the stagnant gas
flow. This is explained by the fact that a specific
amount of time—dependent on the mass, surface, and
heat capacity of the components, on the coefficient of
heat transfer, and on the law governing the change in
gas temperature with time—is required for the heating
of these components. Experimentally confirmed calcu-
lations have demonstrated that the turbine-buckettem-
perature of a gas-turbine engine [GTE] is substantially
lower (by 40—80°) than the gas temperature [1] at the
end of acceleration, because of the thermal inertia of
the buckets. From the standpoint of bucket [blade]
strength it is frequently unnecessary, in acceleration
regimes, to be concerned about great excesses of gas
temperature [2] (when the thermal stresses are small,
and when the over-all magnitude of the stresses does
not exceed the elastic limit). It was assumed in the
bucket-temperature calculations of [1,2], as well as
in [3], that the gas temperature increased instanta-
neously from its initial magnitude of tey by a quantity
Aty and then remained continuously constant and equal
to tg, = tg1 + Atg. These conditions are characteristic
of stationary, marine, and particularly locomotive
GTE in which, after acceleration, the gas tempera-
ture remains constant for a comparatively long period.
However, many engines operate in a markedly variable
regime in which the gas temperature, the rpm, and
the engine power vary periodically. Among these we
can include passenger-car and transport GTE, as well
as aircraft engines when the aircraft is engaged in the
execution of advanced flight maneuvers. There is a
sufficient reduction in the strength and life of blades
as a result of periodic variations in temperature, so
that the determination of the service and over-all life
of a gas~turbine engine requires familiarity with the
manner in which the temperature of the engine's buck-
ets changes in a variable regime. Under operational
conditions the gas temperature can be measured and
recorded on an oscillograph; however, the blade tem~
peratures (particularly in the rotor) are not easily
recorded under these conditions. The determination of
the bucket temperatures for periodic variations in gas
temperatures by means of calculation therefore makes

it possible to achieve a result without resorting to
complex measurements, at the same time also making
it possible in the general case to analyze those factors
which affect the thermal state of the blades.

The differential equation for the determination of
temperatures in uncooled blades [buckets] as a function
of time can be written as follows {1]:

A(t,—t)dv = diy,. (1)

The temperature tg for the stator blades correspnds
to the stagnation temperature with respect to the abso-
lute velocity of the inlet flow, while for the rotor
blades it corresponds to the stagnation temperatures
with respect to the relative velocity. We will examine
the average blade temperature over the entire cross
section, If necessary, we will determine the tempera-
ture of the trailing edge in approximate terms (without
consideration of heat conduction); for this the coeffi-
cient A should be calculated for the Fy,/Gy, ratio corre-
sponding fo the surface and the weight of the blade in
the region of the trailing edge. This ratio is propor-
tional to the perimeter of the profile section under con-
sideration divided by its lateral cross section.

The general solution for the linear equation (1) has
the form

fy= exp{— A1) { A explAldt 4 C}. {2)

If we know the law governing the change in the gas
temperature and in the quantity A with time, the blade
temperature can always be determined in quadratures.
If the integral in Eq. (2) is not taken in final form, the
problem is more simply resolved by an approximate
solution of Eq. (1)—by the method of broken Euler
lines, by means of power series, etc.

With a periodic change in temperature, the quantity
ty in (2) can be represented by a Fourier series. The
quantity A is a function of time in view of the fact that
the heat-transfer coefficient is not constant. If A is
variable, the integral in (2) is not expressed in ele-
mentary functions, thus complicating the solution of the
problem and the analysis of the derived result. In con-
nection with the fact that the heat-transfer coefficient
does not generally vary markedly, in the determination
of the temperature of the blades flushed by a stream
with a periodieally varying temperature, we can assume
that the value of a, is constant and equal to the time~
averaged coefficient of heat transfer from the gas to
the blades. The quantity A is constant in this case and
if the gas temperature with respect totime is expressed
by a Fourier series, the integrals in (2) are brought to
the form Sexpx sinxdx or \expxcosxdx, and these are
easily taken. )
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Let us solve the problem in which the gas tempera-
ture varies with time according to the sinusoidal law

fy + 1t fog —Eg1 . T
fp=-2 1 22 4 g2 el gy (cor—————).
T 2 2 @)
It follows from Eq. (3) that the gas temperature at the
initial instant (7 = 0) is equal to its initial value tgx'
Although the case of the sinusoidal variation in tem-
perature is the simplest of the numerous laws govern-
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Fig. 1. Aty (°C) versus time (sec) at tg2 -
=ty = 300° C; A = 0.2 sec™! and various
relations w/A: 1) w/A = 0; 2) 0.5; 3) 1;

4) 2; 5) o,

ing the periodic variation in temperature, it is, never-
theless, sufficiently general in many cases and,
moreover, a number of general quantitative relation-
ships can be established on the basis of a sinusoidal
law governing the change in tg.

Substitution of (3) into (2) makes it possible to de-
rive a general solution for (1) in the case of a sinusoi-
dal variation in the gas temperature:

=fgl—l—tg2 N A lys—1
2 At 4 @ 2

X [Asin(mr———;—)—m cos (m—%)] +

+ Cexpl— A1l (4)

ty L

We find the arbitrary constant C from the condition
that when 7 = 0 the blade temperature is equal to ty,.
From (4) for T = 0 it then follows that

lmt e A by —ily
2 A - o 2

C =1y,

Having substituted this quantity into (4) and having
assumed that tp, = tgy (i. e., the gas temperature
prior to the onset of the nonsteady regime and the
blade temperature coincide), after transformations
we derive an equation for the determination of the
blade temperature for a sinusoidal variation in the gas
temperature:

fy =ty — Lgg— 1ty (1 . 1 \+
1

2exp At
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+ tgg—fgl - x
®
21/ 1+"A—2
. n o
X sin{ @t — — —arctg — |,
( > —arclg A) (5)

where tg,. =tg, + tg,/2 is the average gas tempera-
ture.

The phase angle ¢ = arctg (w/A) shows here the
extent to which there has been a phase shift in the
sinusoid showing the change in the gas temperature.

It follows from Eq. (5) that the blade temperature
for a simple harmonic variation in the gas temperature
can be demonstrated to consist of three terms: a con-
stant equal to the average gas temperature, an expo-
nential term, and one that is sinusoidal, i.e.,

ty="lg, — Alvr + Ator, (6)
where
Afb1=———tg2_tgli | — ! ;
2expA T 1 o?
T

Aty = —22 "l g ((DT - —arctgﬁ) )

- =
Y 1

In accordance with Eq. (6), the curve showing the
change in the blade temperature can be divided into
two segments—an initial segment and a primary seg-
ment. The exponential term in the initial segment has
a marked effect on the blade temperature and the curve
ty, = f(r) in this segment will not be periodic. The
relationship between Aty and time for the various
w/A ratios is shown in Fig. 1. We see that the quan-
tity Aty ; increases with an increase in w/A, varying
from zero when w/A = 0to (t ¢ 1)/2 when w/A =
and 7 = 0. The value of Ath rapidly diminishes with
an increase in 7 and approaches very close to zero in
value for virtually all actual magnitudes of w/A when
T =10-15 sec. If we assume that the effect of the expo-

nential term can be neglected when Aty < 0.01 Aty
the blade temperature as a function of time conse-
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Fig. 2. Amplitude of blade-temperature oscilla-

tions in the main region versus w/A with sinus-~

oidal variation of gas temperature and tg2 —tg=
=300° C.

quently becomes periodic from this instant on. For
quantities A = 0.2—0.4 sec~1, usual for blades, the
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curve ty = f(t) becomes periodic within 10—-20 sec
after the onset of the nonsteady regime. Inthe solution
of the majority of practical cases for a sufficiently
prolonged periodic variation in gas temperature it
therefore becomes possible to assume that Aty = 0
and the calculations can be carried out according to
the formula

tg2_ tgl
=

2
2]// 1_].:‘:1_2

. T ®
X sin — — —arctg — ).
((D”C 5 g A)

ty =tg,, + Ao =tg,, + X

(7

We will analyze the derived equations for the deter-
mination of blade temperatures in the case of asinus-
oidal time-variation in the gas temperature. As we
can see from Eg. (5), the nature of the variation in
the blade temperature is a strong function of the di~
mensionless ratio w/A. We can examine two extreme
cases:

a) If w/A =0, which may be the case when A = »
{w =0 is the case in which there are no fluctuations
and is thus of no interest), i. e., with infinitely small
thermal inertia for the blades, their temperature will
be expressed by the following equation:

too —loy . R
ty = tg, T E——Q——g—sm (mt——é—)

It follows from a comparison of this expression rela-
tive to (3) that the blade temperature coincides with
that of the gas. The amplitude of the fluctuations in
the blade temperature will be at its maximum in this
case.

b) If w/A = = which corresponds to A = 0, the
blade temperature will be equal to

7 o laitile
l‘b == igav == 2 e=

i. e., it will be constant and coincide with the average
gas temperature, while the amplitude for the fluctua-
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tion in the blade temperature is equal to zero. It is
not difficult to see that this case corresponds to an
infinitely great thermal inertia for the blade.

All of the practically realizable laws governing the
variation in t;, lie between these two extreme cases.
The amplitude of the fluctuation in blade temperature
(on the primary segment of the variation) will be de-
fined by the expression

Atmax = (£, —1 )/2l/1+—"’i
bII 22 gl 42

i. e., the quantity AR2X will be smaller, the larger
bIT

the ratio w/A (an analogous result can be derived by
subjecting Eq. (1) to a Laplace transformation) (Fig.
2), in which case the two above-considered extreme
cases follow directly from the above-cited equation.
For a clear presentation of the nature of the change
in blade temperature with time in the case of a sinus-
oidal variation in gas temperature, we carried out the
caleculation according to formula (5) with the following
initial conditions: tgl =600° C, th =900°C, w=02r=
= 0.628 sec™l and A = 0.4 sec”l. The change in thegas
temperature and in the blade temperature with time is
shown in Fig. 3. We see from the cited curves that
the maximum blade temperature does not exceed 830°
C, i.e., lower by 70° than the maximum gas tempera-
ture. The amplitude for the fluctuation in the blade
temperature on the primary segment is AtI3% =g81°C
which is considerably lower than the amplitude of the
gas temperature which is equal to 150° C. The pri-
mary segment of fluctuations in blade temperature
begins within 11 sec and the fluctuations then become
harmonic and their amplitude assumes a constant
value, The maximum blade temperature on this seg~
ment is shifted relative to the maximum of the tem-
perature curve by the angle of the phase shift which is
equal to arctg w/A and in the case under consideration
this shift (with respect to time) amounts to 1.5 sec.
The thermal inertia of the blades thus leads to a re-
duction in their maximum temperature and in the
amplitude of the fluctuation relative to the amplitude
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Fig. 3. Blade temperature with sinusoidal law of tempera-
ture variation for the gas and under initial conditions: A =
= 0.4 sec™!; w = 0.27 sec™!; T = 10 sec; Atn}?X =81° C;

I) initial region; II) main region.
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of the fluctuation in gas temperature, which has a
favorable effect on the dynamic strength of theblades.
In conclusion we will demonstrate that the time

constant A in Eq. (1) may be assumed to be constant
in the majority of cases. This quantity is proportional
to the coefficient of the heat transfer from the gas to
the blade, i.e.,

A = cansta,.

The coefficient of heat transfer from the gas to the
blade is equal to [1]

N Reo-5453, — const G351,

g 545 *
b e

a

If the coefficients of heat conduction and dynamic
viscosity as known functions of temperature (inter-
polational formulas) are substituted into this last
equation, with consideration of the fact that with con-
stant pressure the gas flow rate is inversely propor-
tional to the square root of the temperature, we will
have

0, = const Tg‘
and, consequently,
_ Rl
A = const Tg . (8)

The amplitude for the fluctuation in the gas temper-
ature generally does not exceed 150-200°, i. e., the gas
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temperature varies by no more than 15-25% in com-
parison with the quantity T, . As follows from for-
mula (8), the quantity A thepefore changes by no more
than 1.5—~2.5%, and it may be regarded as constant. In
the event that there is a change in the gas pressure,
the quantity A varies more markedly, but in this case
its variation can be neglected in most cases.

NOTATION

A is a constant; «, is the heat-transfer coefficient
from gas to blade; F,, Gp, and ¢y, are the surface,
weight, and heat capacity of blade; w is the frequency;
T is the period; 7 is the time; ty, is the temperature of
the blades; T, and t, are the gas temperatures; Gg is
the gas flow rate; b is the blade chord; u is the dy-
namic viscosity coefficient of the gas; Ag is the ther-
mal conductivity of the gas.
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